2025-01-18
Some math texts use pictorial illustrations, and some do not. Like the words, the picture needs slow and careful study. A quick glance will not do, as it might in a biology text.
The OSU at Newark Dept. of Mathematics
HUGO MIGRATION NOTES
\ symbols for newlinesTODO: Fix this.
This equation is inline: $ \varphi = \dfrac{1+\sqrt5}{2}= 1.6180339887… $
This equation is inline: $ \varphi = \dfrac{1+\sqrt5}{2}= 1.6180339887… $
$$
\varphi = 1+\frac{1} {1+\frac{1} {1+\frac{1} {1+\cdots} } }
$$
$$ \varphi = 1+\frac{1} {1+\frac{1} {1+\frac{1} {1+\cdots} } } $$
$$
\begin{pmatrix}
a & b \\\\
c & d
\end{pmatrix}
$$
$$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} $$
$$
\begin{aligned}
\dagger \text{Some long expression} & = \frac{\frac{2}{N} \pm \sqrt{(\frac{2}{N})^2 + 4 \cdot \frac{1}{N}\ln{\frac{6m_{\mathcal{H}}(2N)}{\delta}}}}{2} \\\\
& = \frac{1}{N} \pm \frac{1}{N}\sqrt{1+N\ln{\frac{6m_{\mathcal{H}}(2N)}{\delta}}}
\end{aligned}
$$
$$ \begin{aligned} \dagger \text{Some long expression} & = \frac{\frac{2}{N} \pm \sqrt{(\frac{2}{N})^2 + 4 \cdot \frac{1}{N}\ln{\frac{6m_{\mathcal{H}}(2N)}{\delta}}}}{2} \\ & = \frac{1}{N} \pm \frac{1}{N}\sqrt{1+N\ln{\frac{6m_{\mathcal{H}}(2N)}{\delta}}} \end{aligned} $$
$$C_p[\ce{H2O(l)}] = \pu{75.3 J // mol K}$$
$$ C_p[\ce{H2O(l)}] = \pu{75.3 J // mol K} $$
The concentration by pressure of water: $ C_p[\ce{H2O(l)}] = \pu{75.3 J // mol K} $
The concentration by pressure of water: $ C_p[\ce{H2O(l)}] = \pu{75.3 J // mol K} $
$ \LaTeX = {\infty}^{\infty} $